Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods.
نویسندگان
چکیده
Abiotic stress is one of the primary constraints limiting the range and success of arthropods, and nowhere is this more apparent than Antarctica. Antarctic arthropods have evolved a suite of adaptations to cope with extremes in temperature and water availability. Here, we review the current state of knowledge regarding the environmental physiology of terrestrial arthropods in Antarctica. To survive low temperatures, mites and Collembola are freeze-intolerant and rely on deep supercooling, in some cases supercooling below -30°C. Also, some of these microarthropods are capable of cryoprotective dehydration to extend their supercooling capacity and reduce the risk of freezing. In contrast, the two best-studied Antarctic insects, the midges Belgica antarctica and Eretmoptera murphyi, are freeze-tolerant year-round and rely on both seasonal and rapid cold-hardening to cope with decreases in temperature. A common theme among Antarctic arthropods is extreme tolerance of dehydration; some accomplish this by cuticular mechanisms to minimize water loss across their cuticle, while a majority have highly permeable cuticles but tolerate upwards of 50-70% loss of body water. Molecular studies of Antarctic arthropod stress physiology are still in their infancy, but several recent studies are beginning to shed light on the underlying mechanisms that govern extreme stress tolerance. Some common themes that are emerging include the importance of cuticular and cytoskeletal rearrangements, heat shock proteins, metabolic restructuring and cell recycling pathways as key mediators of cold and water stress in the Antarctic.
منابع مشابه
Functioning of terrestrial ecosystems of the Maritime Antarctic in a warmer climate
Functioning of terrestrial ecosystems of the Maritime Antarctic in a warmer climate Printing: PrintPartners Ipskamp B.V. 1 General introduction 2 External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the Maritime Antarctic region 3 Food choice of Antarctic soil arthropods clarified by stable isotope signatures. 4 The effect of environmental change on soil arthropod co...
متن کاملGene expression changes governing extreme dehydration tolerance in an Antarctic insect.
Among terrestrial organisms, arthropods are especially susceptible to dehydration, given their small body size and high surface area to volume ratio. This challenge is particularly acute for polar arthropods that face near-constant desiccating conditions, as water is frozen and thus unavailable for much of the year. The molecular mechanisms that govern extreme dehydration tolerance in insects r...
متن کاملDesiccation tolerance and drought acclimation in the Antarctic collembolan Cryptopygus antarcticus.
The availability of water is recognized as the most important determinant of the distribution and activity of terrestrial organisms within the maritime Antarctic. Within this environment, arthropods may be challenged by drought stress during both the austral summer, due to increased temperature, wind, insolation, and extended periods of reduced precipitation, and the winter, as a result of vapo...
متن کاملComparative Metagenomic Analysis Reveals Mechanisms for Stress Response in Hypoliths from Extreme Hyperarid Deserts
Understanding microbial adaptation to environmental stressors is crucial for interpreting broader ecological patterns. In the most extreme hot and cold deserts, cryptic niche communities are thought to play key roles in ecosystem processes and represent excellent model systems for investigating microbial responses to environmental stressors. However, relatively little is known about the genetic...
متن کاملHypolithic communities: important nitrogen sources in Antarctic desert soils.
Hypolithic microbial communities (i.e. cryptic microbial assemblages found on the undersides of translucent rocks) are major contributors of carbon input into the oligotrophic hyper-arid desert mineral soils of the Eastern Antarctic Dry Valleys. Here we demonstrate, for the first time, that hypolithic microbial communities possess both the genetic capacity for nitrogen fixation (i.e. the presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 217 Pt 1 شماره
صفحات -
تاریخ انتشار 2014